翻訳と辞書 |
Cyclically ordered group : ウィキペディア英語版 | Cyclically ordered group In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order. Cyclically ordered groups were first studied in depth by Ladislav Rieger in 1947. They are a generalization of cyclic groups: the infinite cyclic group and the finite cyclic groups . Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers , the real numbers , and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group and its subgroups, such as the subgroup of rational points. ==Quotients of linear groups== It is natural to depict cyclically ordered groups as quotients: one has and . Even a once-linear group like , when bent into a circle, can be thought of as . showed that this picture is a generic phenomenon. For any ordered group and any central element that generates a cofinal subgroup of , the quotient group is a cyclically ordered group. Moreover, every cyclically ordered group can be expressed as such a quotient group.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cyclically ordered group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|